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Abstract

The classical continuum mechanical model of granular media of rational thermodynamics results in a Coulomb–

Mohr type equilibrium stress–strain relation. The proof is based on a two component material model introducing a

scalar internal variable. Here we will show how one can get similar stress–strain relations without assuming a balance of

substructural interactions, considering only the restrictions of the Second Law of thermodynamics.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In their classical paper Goodman and Cowin derived a material model of porous and granular media

using pure thermodynamic reasoning (Goodman and Cowin, 1972). They considered a material where the

density of the solid component is c, the total density is q and the volume distribution function m is defined by
the following formula
* Te

E-m
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q ¼ mc:
Later the scalar internal variable m was interpreted as roughness and its (substantial) time derivative _m as

abrasion (Kirchner, 2002; Kirchner and Teufel, 2002). Goodman and Cowin assumed a material with

incompressible solid component and with a balance form dynamic equation for the abrasion, a balance of

substructural interactions (Goodman and Cowin called it balance of equilibrated force) (Capriz, 1989;

Mariano, 2002):
c€m ¼ r � hþ r _m;
where h is the conductive current and r _m is the production of _m. After introducing a suitable constitu-

tive space they investigated the requirements coming from the Second Law of thermodynamics with
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Coleman–Noll procedure. Their final result was a definition of Coulomb granular material by the following

stress function
Te ¼ ðb0 � bm2 þ arm � rm þ 2amDmÞI� 2arm � rm þ kTrð�ÞIþ 2l�;
where b0, b, a are material parameters, k; l are the Lam�e coefficients. I is the second order unit tensor, �
denotes the tensorial product and Tr is the trace. As one can see an ideal elastic behavior is coupled to the

gradient dependent characteristic part, represented by the first two terms.
In this paper we will show, that a similar material model can be derived without assuming a balance of

substructural interactions (equilibrated forces), with the very same weakly nonlocal extension of the con-

figurational space as in the model of Goodman and Cowin. In the following Liu’s theorem will play an

important technical role. Details of the different state spaces, more detailed description of thermodynamic

concepts, the applied mathematical methods (especially Liu procedure) can be found in Muschik et al.

(2001), regarding the weakly nonlocal extension see V�an (2002, 2003). A thermodynamic background of

continuum field theories is in Verh�as (1997).
2. Weakly nonlocal fluids––granular media

In our treatment the basic state space of granular media is spanned by the density of the solid com-

ponent, the volume distribution function and the velocity ðc; m; vÞ. This basic state space is the simplest large
deformation treatment and considers the possibility of changes in the topological structure typical in fluids.

With this basic state we are constructing a constitutive model of a dilatant granular material, because q is

not necessarily constant. The constitutive state space contains gradients of the basic state variables as in case
of classical fluids. Therefore, it is spanned by the variables ðc;rc; m;rm; v;rvÞ. The functions interpreted on
the constitutive space are the constitutive functions. The space of independent variables is spanned by the next

time and space derivatives of the constitutive variables ð _c;r _c;r2c; _m;r _m;r2m; _v;r _v;r2vÞ, as a consequence
of the entropy inequality. Here r2 denotes the second space derivative.

In the following we will assume that the solid part of the material is nearly incompressible, therefore the

deformation is due to the changes in the volume distribution function. This condition can be expressed as
_c ¼ 0: ð1Þ

Considering (1) the continuity equation can be written as
_m þ mr � v ¼ 0: ð2Þ

(1) and (2) are constraints of the independent variables, and are to be considered in the application of the

Liu procedure. Moreover, the structure of the constitutive state space implies that the space derivatives of
the above equations contain terms solely from the space of independent variables, therefore they are also

constraints. The derivative of (1) is
r _c ¼ 0; ð3Þ

and the derivative of (2) results in
r _m þrmr � vþ mrr � v ¼ 0: ð4Þ

Finally, the balance of momentum is written as
cm _vþr � P ¼ 0: ð5Þ

Here P is the pressure tensor. The requirement of nonnegativity of the entropy production is
cm_sþr � j ¼ r P 0; ð6Þ
s s
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where the specific entropy s, the conductive current of the entropy js and the pressure P are the constitutive

quantities, functions interpreted on the constitutive space. With given constitutive functions the dynamic

equations of the granular continua are (1), (2) and (5). According to the Second Law we are to find these

constitutive functions that the entropy production be nonnegative. In this way the nonnegativity will be a
pure material property, independent of the initial conditions. Liu procedure is applied with the multiplier

form (see Liu, 1972; V�an, 2002)
q_sþr � js � C1 _c � C2r _c � C3ð _m þ mr � vÞ � C4ðr _m þrmr � vþ mrr � vÞ � C5ðcm _vþr � PÞP 0:
Here we introduced Lagrange–Farkas multipliers C1, C2, C3, C4 and C5 for the constraints (1), (3), (2), (4)

and (5) respectively. In deriving the Liu equations one should consider that the substantial time derivative

does not commute with the space derivative. The following identity is to be applied
ðr _aÞ ¼ r _a�rv � ra:
Now the multipliers of the independent variables give the Liu equations, respectively. Introducing a

shorthand notation for the partial derivatives of the constitutive quantities as e.g. oc ¼ o
oc we get
qocs ¼ C1; ð7Þ

qorcs ¼ C2; ð8Þ

qoms ¼ C3; ð9Þ

qorms ¼ C4; ð10Þ

qovs ¼ qC5; ð11Þ

qorvs ¼ 0; ð12Þ

ðormjs � C5ormPÞs ¼ 0; ð13Þ

ðorcjs � C5 � orcPÞs ¼ 0; ð14Þ

ðorvjs � C4mI� C5 � orvPÞs ¼ 0: ð15Þ

The superscript s denotes the symmetric part of the corresponding function. Eqs. (7)–(11) determine the

Lagrange–Farkas multipliers. The solution of (12) results in an entropy that is independent of the gradient

of velocity, therefore (15) can be integrated and a particular form of js is determined. Substituting that form

of js into (13) and (14) we get two equations that are fulfilled if
omrms ¼ 0; omrcs ¼ 0; ormrms ¼ 0; ormrcs ¼ 0: ð16Þ
The most general generalized entropy function, isotropic and second order in v and in rc that satisfies
the above conditions is the following
sðm;rm; c;rc; vÞ ¼ seðm; cÞ � mðm; cÞ v
2

2
� aðm; cÞ ðrcÞ2

2
: ð17Þ
Here m and a are arbitrary nonnegative functions. We can see, that entropy is a concave function of the

variables v and rc. Moreover, the entropy is independent of rm. Considering (17), the solution of the last
Liu equation (15) gives the entropy current as
j ¼ �mv � Pþ j ðm; c; vÞ: ð18Þ
s 1
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Here j1 is an arbitrary function. Applying (17) and (18) the dissipation inequality simplifies to
r � j1 �rðmvÞ : Pþ qðarc � rc � momsIÞ : rvP 0:
If j1 	 0 and m ¼ 1 (as usual) then the dissipation inequality can be transformed into a solvable form.

Introducing the notation p ¼ �mqomse entropy inequality further simplifies to
� P

 
� p

 
þ qoma

ðrcÞ2

2

!
I� qarcrc

!
: rvP 0:
The notation is not arbitrary, because omse ¼ oqseomq ¼ � ~pðm;cÞ
T0q2

, where ~p is the scalar pressure according to

the traditional thermostatic definition, corresponding to the Gibbs relation. Or, alternatively investigating a

pure mechanical system one can recognize that our s function is still connected to the entropy only in some

properties, therefore one can introduce the physical entropy ~s ¼ s
T0
. In this case p is the scalar pressure, T0 is

a constant temperature and all the considerations above are valid. Let us underline here, that there is

nothing mysterious in the above identifications that would weaken the above reasoning. Our whole pro-
cedure is based on the existence of a constitutive function with the nonnegative balance, a kind of general

stability requirement. One can exploit this property and recognize the physical meaning of the corre-

sponding quantities later. On the other hand we should not forget that the introduced ~s is a kind of

generalized, nonequilibrium ‘‘physical’’ entropy with rather strange variables (velocity and gradients) and

there is no unique nomination for such quantities (coarse grained kinetic potential?).

The inequality above contains only the pressure tensor P as constitutive quantity that depends on the

velocity gradient, therefore it is solvable. The general solution is
P� Pe ¼ Pv ¼ �LðrvÞ;

where Pv is the viscous part of the pressure, L is a nonnegative constitutive function. Here we assumed a

symmetric pressure tensor as it is usual for materials without internal moment of momentum. Furthermore,

the equilibrium, static part of the pressure is Pe and it is defined as
Pe ¼ p

 
þ qoma

ðrcÞ2

2

!
I� qarcrc: ð19Þ
A material defined by this equilibrium pressure tensor will be called Coulomb–Mohr material.
3. Coulomb–Mohr materials

The pressure tensor (19) has several remarkable properties. First of all, the static shear stress is not zero,
and rc is an eigenvector of Pe. Furthermore, introducing an arbitrary direction with a unit vector n, one

can define a pressure normal to the direction n as
N :¼ n � Pe � n ¼ p̂ � qaðrc � nÞ2;

where p̂ ¼ p þ qomaðrcÞ2=2. Denoting the shear pressure by S :¼ P � N one can get
S2 þ N 2 ¼ ðPe � nÞ � ðPe � nÞ ¼ p̂2 � 4qap̂ðrc � nÞ2 þ 4ðqaÞ2ðrcÞ2ðrc � nÞ2:

After a short calculations it follows that
S2 þ ðN � tÞ2 ¼ r2 where t ¼ p̂ � r and r ¼ qaðrcÞ2:

Hence, the possible Mohr circles in the material have a special structure, their envelope from above is a
straight line, the material satisfies a failure criteria of Coulomb–Mohr kind, as the Coulomb material of
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Goodman and Cowin (Fig. 1). One can check that this is really a failure criteria, the second derivative of the

entropy function (17) become semidefinite on the Coulomb–Mohr line and the line separates the region of

the state space where the thermodynamic stability is violated from the region where it is fulfilled.

Material stability in mechanics is far more complex matter than in equilibrium thermodynamics of gases
and fluids where it is connected to the appearance of new phases (Goddard, 2002, 2003). On the other hand

in a thermodynamic approach the loss of thermodynamic stability means the violation of dynamic stability

(e.g. the corresponding partial differential equations loose their hyperbolicity). Stability losses of this kind

where treated in connection of rigid, microcracked materials in V�an (2001). There the microstructure was

characterized by a vectorial dynamic variable D (representing the average crack length, a damage) and two

general free energies of the microcracked materials were introduced. There with special material parameters

one can arrive to a Coulomb–Mohr failure criteria and pressure tensors similar to (19), but with a local

variable called damage vector D, instead of the gradient variable rc. The role of rc is similar to D in every
sense. Recalling the quadratic form of the entropy function the loss of thermodynamic stability is not a

direct consequence of an increasing jrcj. The loss of stability is more involved and always connected to

changes in the stress/deformation state and appears only in perpendicular to rc, in a ‘shear’ direction. The
complexity of the different kind stability losses is investigated e.g. in B�eda (1999, 2000).

Our basic state space and configuration space was that of a fluid. In the one component case, when the

configuration state space is ðq;rq; v;rvÞ an ideal Euler fluid and the viscous Navier–Stokes fluids appear

after similar derivations. Remarkable, that a higher order weakly nonlocal one component fluid, where the

constitutive state space contains also the second order derivative of the density, results in the Madelung
fluid (known from the hydrodynamic version of quantum mechanics) in the ideal, nondissipative case (V�an
and F€ul€op, 2003).

According to the comparison of Kirchner and Hutter the model of Goodman and Cowin is the most

robust one among several local continuum granular material models of porous and granular media (with

scalar internal variables). Interestingly, the other compared models can be considered as relocalized

(according to the terminology of V�an (2003)), because they can introduce nonlocality through a generalized
entropy current. A different continuum granular model of Aranson and Tsimring introduces also a scalar

internal variable with a Ginzburg–Landau dynamics (assumed in an ad hoc way) (Aranson and Tsimring,
2001; Sapozhnikov et al., 2002; Volfson et al., 2003). Their starting point is the granular kinetic theory and

thorough calculations and simulations try to understand the connections in that direction. Therefore their

model is not compatible with a realistic static case. In understanding the granular phenomena and espe-

cially to create an applicable continuum model is a great challenge of physics where definitely a large

extension of our understanding of continuum concepts and therefore the extension of continuum theories is
N
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Fig. 1. The envelope of the Coulomb–Mohr circles as a boundary of the stability.
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necessary (Capriz, 2003). The simple model shown in this work is a step in that direction demonstrating the

capabilities and simplicity of thorough constitutive reasoning.

Finally, it is important to observe the differences in the conditions of the derivation and also in the final

results of the model of Goodman–Cowin and the present one. Here the fluid like state space and the large
differences in the compressibility were essential conditions in the derivation. There was no need to introduce

a balance of substructural interactions (but of course the state space can be extended to include €c and one

can investigate the consequences). We have got a Coulomb–Mohr failure criteria in the static limit in both

cases. However, the structure of the equilibrium pressure tensors and therefore the implied physical reasons

were completely different. To investigate the physical relevance of the two models further work is necessary.

In this direction the known solutions are very important and generalization of the Goodman–Cowin model

like the flow calculations of Wang and Hutter (1999) and Massoudi (2001). Another possibility to test the

differences could be to look into static failure data of Coulomb–Mohr materials. Related experimental data
regarding porous rocks have been published recently by V�as�arhelyi (2002, 2003a,b).
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